Search results for "Hydrodynamical simulation"

showing 3 items of 3 documents

Matter Mixing in Aspherical Core-collapse Supernovae: Three-dimensional Simulations with Single Star and Binary Merger Progenitor Models for SN 1987A

2019

We perform three-dimensional hydrodynamic simulations of aspherical core-collapse supernovae focusing on the matter mixing in SN 1987A. The impacts of four progenitor (pre-supernova) models and parameterized aspherical explosions are investigated. The four pre-supernova models include a blue supergiant (BSG) model based on a slow merger scenario developed recently for the progenitor of SN 1987A (Urushibata et al. 2018). The others are a BSG model based on a single star evolution and two red supergiant (RSG) models. Among the investigated explosion (simulation) models, a model with the binary merger progenitor model and with an asymmetric bipolar-like explosion, which invokes a jetlike explo…

010504 meteorology & atmospheric sciencesSupergiant starAstrophysics::High Energy Astrophysical PhenomenaBinary numberchemistry.chemical_elementNeutron starFOS: Physical sciencesHydrodynamical simulationAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesCore-collapse supernovaeAstrophysics::Solar and Stellar AstrophysicsRed supergiant010303 astronomy & astrophysicsMixing (physics)HeliumStellar evolutionary modelSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLine (formation)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsSupernova dynamicSupernovaNeutron starchemistryAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceExplosive nucleosynthesisSupergiantAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Additional Evidence for a Pulsar Wind Nebula in the Heart of SN 1987A from Multiepoch X-Ray Data and MHD Modeling

2022

Since the day of its explosion, supernova (SN) 1987A has been closely monitored to study its evolution and to detect its central compact relic. In fact, the formation of a neutron star is strongly supported by the detection of neutrinos from the SN. However, besides the detection in the Atacama Large Millimeter/submillimeter Array (ALMA) data of a feature that is compatible with the emission arising from a proto-pulsar wind nebula (PWN), the only hint for the existence of such elusive compact object is provided by the detection of hard emission in NuSTAR data up to ~ 20 keV. We report on the simultaneous analysis of multi-epoch observations of SN 1987A performed with Chandra, XMM-Newton and…

SHARPSupernova remnantsAstrophysics::High Energy Astrophysical PhenomenaNeutron starFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsX-ray sourcesNeutron starsX-ray sourceX-ray astronomyMagnetohydrodynamical simulationSettore FIS/05 - Astronomia E AstrofisicaSupernova remnantPulsarPlasma astrophysicsPlasma astrophysicX-ray point sourcesX-ray observatoriesShocksCompact objectsPulsarsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Horizon 2020Magnetohydrodynamical simulationsShockAstronomy and AstrophysicsX-ray point sourceInterstellar synchrotron emissionX-ray observatorieSpace and Planetary ScienceEuropean Union (EU)Astrophysics - High Energy Astrophysical PhenomenaCompact objectThe Astrophysical Journal
researchProduct

Acoustic Wave Properties in Footpoints of Coronal Loops in 3D MHD Simulations

2021

Acoustic waves excited in the photosphere and below might play an integral part in the heating of the solar chromosphere and corona. However, it is yet not fully clear how much of the initially acoustic wave flux reaches the corona and in what form. We investigate the wave propagation, damping, transmission, and conversion in the lower layers of the solar atmosphere using 3D numerical MHD simulations. A model of a gravitationally stratified expanding straight coronal loop, stretching from photosphere to photosphere, is perturbed at one footpoint by an acoustic driver with a period of 370 seconds. For this period acoustic cutoff regions are present below the transition region (TR). About 2% …

PhysicsPhotosphere010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaSolar physics Solar atmosphere Solar oscillations Solar coronal waves Solar chromosphere Solar coronal loops Magnetohydrodynamical simulations MagnetohydrodynamicsFOS: Physical sciencesAstronomy and AstrophysicsAcoustic waveCoronal loop01 natural sciencesCoronaComputational physicsStanding waveAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary Science0103 physical sciencesCutoffAstrophysics::Solar and Stellar AstrophysicsMagnetohydrodynamics010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesThe Astrophysical Journal
researchProduct